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Abstract- The term “premature convergence” has been
used for many years as an explanation as to why an evo-
lutionary algorithm fails to find a global optimum, with-
out providing much insight into how to fix the problem
and/or avoid it in the future. In this paper we tie these
issues to notions of (lack of) evolvability that have been
explored in the population genetics community for many
years. In particular, we show how the central equation
in Price’s Theorem can be extended in such a way as to
separate out the individual contributions that reproduc-
tive operators make to evolvability, paving the way for
better designed EAs in the future.

1 Introduction

The term “premature convergence” has been used for many
years in the evolutionary computation community to de-
scribe situations in which an evolutionary optimization al-
gorithm is caught in a local basin of attraction and, as such,
has little chance of further progress towards a global opti-
mum. A common remedy is to try to find a better balance
between “exploration and exploitation” which, for complex
and poorly understood objective landscapes, is a difficult
and challenging task. A standard approach is to do some
EA parameter tuning over multiple runs in an attempt to
find such a balance. A more satisfying approach would be
to have an EA capable of dynamically adapting this balance.

In order to achieve this we need some internal mecha-
nism for measuring this balance. A classic example of this
is the “1:5 rule” used in most ES EAs to dynamically adapt
the step size of the Gaussian mutation operator (Schwe-
fel 1981). The focus of this paper is on whether there are
more general mechanisms for maintaining an effective ex-
ploration/exploitation balance. In this respect we are in-
debted to Lee Altenberg who, as early as 1994 was telling
the EC community to pay more attention to Price’s Theorem
(Altenberg 1994).

In the population genetics community these issues are
discussed in terms of the “evolvability” of a population, that
is, its ability to continue to improve over time with respect
to some measure of quality. Hence, our notion of premature
convergence closely resembles their notion of loss of evolv-
ability. Further, results such as Price’s Theorem suggest
ways of decomposing EA dynamics so as to see the indi-
vidual contributions of selection and reproduction to evolv-
ability.

In this paper we describe some preliminary work in
which we extend the central equation of Price’s Theorem

in a new and interesting way to help visualize EA dynam-
ics as they relate to evolvability. The ultimate goal is to use
these techniques to design better EAs.

2 Background

In 1970, George Price published the articleCovariance and
Selection (Price 1970) in which he presented an equation
that has proved to be a major contribution to the field of evo-
lutionary genetics. His ultimate goal was to create a general
theory of selection. He began by addressing the issue of se-
lection in biology and evolution, and used his equation to
describe and predict the change in gene frequency from one
generation to another.

In particular he noticed that a covariance relationship ex-
ists between the number of successful offspring that an indi-
vidual produces (this is the biological notion of fitness) and
the frequency of any given gene in that individual. If this
covariance value is high, then the existence of that gene is a
good predictor of selection.

Steven Frank (1995) summed up Price’s contributions
with this comment: ”The brilliance of the Price Equation is
that it adds nothing to the fundamental simplicity of evolu-
tionary change but, by making a few minor rearrangements
and changes in notation, the equation provides an easier and
more natural way to reason about complex problems.”

2.1 Price’s Equation

In this section we will provide a brief explanation of the
central equation of Price’s Theorem. Given the following:

• P1 is the parent population

• P2 is the child population

• Q1 is some measured attribute (e.g. gene frequency)
averaged over populationP1

• Q2 is the same measured attribute averaged over pop-
ulationP2

Price’s Equation states that

∆Q =
Cov(z,q)

z
+

∑zi∆qi

Nz
, (1)

where,

• ∆Q = Q2−Q1

• N is the number of individuals inP1



• zi is the number of children to which parenti con-
tributed genetic material

• z = ∑i zi
N

• qi is the measurement of some attribute of parenti
such as the number of occurrences of a particular gene
or combination thereof

• q′i is the average value of theqi attribute measured in
the children of parenti

• ∆qi = q′i - qi

In summary, Price’s Equation estimates the change in a
measurable attribute from the parent population to the child
population. Furthermore, the equation separates the change
attributable to selection from the change attributable to the
genetic operators.

2.2 Applications in Evolutionary Computation

The most direct application of Price’s work involves situ-
ations in which the attribute being measured is gene fre-
quency. For example, Langdon and Poli (2002) show how
measuring gene frequencies is equivalent to determining the
frequency of use of the available primitives in the evolving
solution trees. They were able to use this information to
diagnose the probable causes of poorer performing runs.

However, Price’s ultimate goal was to create a general
theory of selection, not just as it applies to biology. Al-
though its initial application was to modeling changes in
gene frequency, he clearly states “It can also be applied to
non-genetical selection” and gives an example in his paper
of applying it to student IQs to determine which students
will be likely to pass a class.

Altenberg (1995) also demonstrates that gene frequency
is not the only attribute of the individuals which can be mea-
sured. He identifies several different measurement functions
which could be useful, including mean fitness from both the
biological and evolutionary computation perspectives, fre-
quency of schemata, and evolvability.

We are particularly interested in using Price’s Equation
to help us better understand the dynamics of evolvability—
the ability of an EA to continue to make improvements in
fitness over time. The changes in fitness from one genera-
tion to the next is an important metric in the field of quanti-
tative genetics (Mühlenbein 1998). If we focus on changes
in fitness as a measurement function as follows:

∆Q = f (t +1)− f (t), (2)

where f (t) is the average fitness of a population at genera-
tion t, then Price’s Equation tells us how∆Q can be decom-
posed in a useful manner.

Since Price’s Equation is highly theoretical, we need to
validate that equation 1 is a reasonably good estimator of
the observed change in fitness between parents and chil-
dren of real EAs (equation 2). Figure 1 gives an example
of this by plotting the results, averaged over 100 runs, of
applying Price’s Equation to a running evolutionary system

optimizing the Schwefel function that will be described in
Section 4.1. The solid line indicates the average observed
change in fitness between the parents and children from one
generation to the next, and the dots indicate the value of
∆Q calculated using Price’s Equation. From the plot we can
see that in this particular example∆Q tracks the actual ob-
served change in fitness almost perfectly. This was also vali-
dated for the Hierarchical If-and-Only-If function described
in Section 4.2.
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Figure 1: Comparison of Price’s∆Q and the measured
change in fitness between parents and children

3 Extending Price’s Equation

If we are to achieve our goal of understanding how evolv-
ability is affected by individual reproductive operators,we
need to extend Price’s Equation to further separate the ef-
fects of the individual reproductive operators as follows:

∆Q =
Cov(z,q)

z
+

k

∑
j=1

∑zi∆qi j

Nz
, (3)

wherek is the number of genetic operators,q′i j is the average
value of the measurement function applied to the children of
i after the application of operatorj, and∆qi j = q′i j −q′i( j−1).

Also note thatq′i0 = qi andq′ik = q′i.
A proof of equation 3 consists of showing that the sum-

mation term is equivalent to the summation term of Price’s
original equation as follows:

k

∑
j=1

∑ zi∆qi j

Nz
=

1
Nz

k

∑
j=1

∑
i

zi∆qi j

=
1

Nz

k

∑
j=1

∑
i

zi(q
′
i j −q′i( j−1))



=
1

Nz

k

∑
j=1

(

∑
i

ziq
′
i j −∑

i

ziq
′
i( j−1)

)

=
1

Nz

(

∑
i

ziq
′
ik −∑

i

ziq
′
i0

)

=
1

Nz

(

∑
i

zi(q
′
ik −q′i0)

)

=
∑zi∆qi

Nz

We illustrate the utility of the extended version of Price’s
Equation in the following sections.

4 Visualization Results

We have applied the extended Price’s Equation described
in Section 3 to two function optimization problems, with
very different characteristics from one another, in order to
see whether this technique helps us better visualize and un-
derstand the dynamics of a running evolutionary algorithm.
The measurement function we use is mean fitness computed
directly from the objective function.

In all of the experiments described below the evolution-
ary algorithms are implemented with the ECKit Java class
library developed by Potter (1998). The population size is
1000, ranked selection is used, and the representation is ei-
ther binary or real-valued as noted in the problem descrip-
tions below. When a binary representation is used, a bit-
flipping mutation is applied at the rate of 1/L, whereL is
the length of the chromosome. When a real-valued repre-
sentation is used, a Gaussian mutation with adaptive stan-
dard deviations is applied to each gene as described in (Bäck
and Schwefel 1993). With both representations, two-point
crossover is applied at a rate of 0.6. Unless otherwise noted,
experiments are performed for 100 runs and the results av-
eraged to produce the graphs shown in this section.

4.1 Real-Valued Function Optimization

We begin with a standard problem from the function op-
timization literature introduced by Schwefel (1981). The
objective function

f (~x) = 418.9829n +
n

∑
i=1

xi sin
(

√

|xi|
)

defines a landscape covered with a lattice of large peaks and
basins. The predominant characteristic of the function is
the presence of a second-best minimum far away from the
global minimum, intended to trap optimization algorithms
on a suboptimal peak. The best minimums are near the
corners of the space. As in (Potter 1997) we have added
the term 418.9829n to the Schwefel function so its global
minimum will be zero, regardless of dimensionality. In our
experiments the problem has thirty independent variables
constrained to the range(−500.0,500.0).

We are interested in comparing the dynamics of evolving
solutions to the Schwefel function with real-valued verses
binary representations. As shown in Figure 2, standard

best fitness curves indicate that the binary representationap-
proaches the global minimum more quickly, but give us lit-
tle insight into how the operators are exploring or exploiting
the fitness landscape.
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Figure 2: Comparison of best fitness curves from Schwefel
function optimization using real-valued verses binary repre-
sentations

Figures 3 and 4 shows the results from applying the ex-
tended Price’s Equation, where the balance between the ex-
ploitation of ranked selection and the exploration of mu-
tation can be clearly visualized. Note that the Schwefel
function is being minimized, so exploitation is manifested
as a negative change in mean fitness from one generation
to the next, while exploration is manifested as a positive
(disruptive) delta mean fitness. With respect to the binary
representation, Figure 3 shows that the mutation operator
produces significant exploration to the end, thus maintain-
ing the possibility of discovering a better solution, whilethe
real-valued representation with adaptive mutation shown in
Figure 4 anneals the standard deviations to the point where
evolution is essentially shut down by generation 150. This
graph clearly shows that the real-valued evolutionary algo-
rithm might as well be restarted at this point if a sufficient
solution has not already been found.

Turning our attention to the crossover curves, in both fig-
ures it appears that this operator has little effect in solving
this particular problem. However, if we focus on a single
run rather than the average of 100 runs, and expand the y-
axis to better see small differences as in Figure 5, crossover
does indeed appear to be contributing to the evolution of
a solution as it distributes both good and bad chromosome
segments through the population. This is exhibited by the
positive and negative fluctuations in the crossover curve.
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Figure 3: Effect of selection and genetic operators on
Schwefel function optimization using binary representation
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Figure 4: Effect of selection and genetic operators on
Schwefel function optimization using real-valued represen-
tation
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Figure 5: Single-run effect of selection and genetic oper-
ators on Schwefel function optimization using real-valued
representation

4.2 Building-Block Problems

To more fully visualize the effect of crossover, we ap-
plied our extended Price’s Equation to the optimization of
the Hierarchical If-and-Only-If function (HIFF) developed
by Watson (2001). The HIFF function is in the class of
building-block problems that are designed specifically to be
exploitable by the crossover operator while intentionallybe-
ing poorly matched to a symbol-flipping mutation operator.
The HIFF objective function is as follows:

f (S) =







1 if |S|= 1
|S|+ f (SL)+ f (SR) if |S|> 1∧∀i j : si = s j

f (SL)+ f (SR) otherwise,

whereS is a string of symbols,SL is the left half of the
string, andSR is the right half of the string. Given a string of
length 2k, HIFF is characterized by a hierarchy ofk +1 lev-
els. Each level consists of 2k− j substrings of lengthj, where
j ranges from 0 tok, and each substring only contributes
to the value of the objective function when all its symbols
are identical. These internally consistent substrings form
“building blocks” that can be recombined by crossover to
form value conferring strings at a higher level in the hier-
archy. Binary strings of length 26 are used in our experi-
ments, which produce a maximum possible objective func-
tion value is 448 and a minimum possible value is 64.

We contrast the extended Price’s Equation to an ablation
study, a visualization technique in use for decades in which
some genetic operators are turned off during an experiment
to more clearly see the effect of the remaining ones on the
dynamics of the evolutionary system (De Jong 1975; Spears
2000). As shown in Figure 6, performing the ablation study
by selectively turning off crossover and mutation demon-
strates that crossover is indeed a useful operator for opti-



mizing the HIFF function. Not only does crossover alone
find a better solution on average than mutation alone, but
crossover by itself also finds a better solution on average
than both crossover and mutation used together!
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Figure 6: Comparison of best fitness curves from HIFF
function optimization using crossover and mutation verses
crossover only and mutation only

To gain a better understanding of the evolutionary dy-
namics in play here, we apply the extended Price’s Equation
to HIFF optimization using both crossover and mutation as
shown in Figure 7, where it is possible to visualize some of
the dynamics of the interaction between crossover and mu-
tation that is lost in the ablation study. Specifically, mutation
feeds crossover disruptive genes which are spread through
the population when crossover recombines them with other
individuals. This is exhibited in the figure by the slightly
negative (disruptive) recombination curve throughout the
run.

We can also combine Price’s Equation with ablation
by turning off mutation and measuring the effect of only
crossover and selection as shown in Figure 8. This figure
clearly shows the strong initial flurry of activity as crossover
combines internally consistent substrings into larger and
larger fitness conferring strings, and the rapidly converging
population as manifested by the sharply dropping exploitive
effect of selection prior to generation 50.

5 Conclusions and Future Work

Our goal is to be able to design EAs that are capable of
maintaining an effective exploration/exploitation balance.
Our approach is to leverage off existing work in the pop-
ulation genetics community relating to the ability of a pop-
ulation to maintain its ability to evolve over time. In par-
ticular, we have shown how the central equation in Price’s
Theorem can be extended to separate out the contributions
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Figure 7: Effect of selection, crossover, and mutation on
HIFF function optimization
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Figure 8: Effect of selection and crossover on HIFF function
optimization when mutation is deactivated



to evolvability made by individual reproductive operators.
Using this extension we have developed a visualization

tool that allows us to visualize the balance between explo-
ration and exploitation in new and interesting ways. In par-
ticular, we can see the different roles that selection, mu-
tation, and crossover play, and how they interact with one
another to maintain a reasonable balance between the dis-
ruptive effect of exploration and the convergent effect of
exploitation.

We have explored a single measurement function—mean
fitness computed directly from the objective function. Other
measurement functions may give us additional insights. Our
next step is to explore some different measurement func-
tions and use the insights from these experiments to help
us design operators and representations better matched to
the problems we are trying to solve. Ultimately, we would
like to use these results to provide an EA with the feedback
it needs to dynamically adjust the exploration/exploitation
balance.
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